Revista científica Ciencia y Tecnología Vol 21 No 29 págs. 1-13
http://cienciaytecnologia.uteg.edu.ec
An R package for batch process control and monitoring using
Dual STATIS-Parallel Coordinates approach
Un paquete de R para control y monitoreo de procesos por
lotes utilizando el enfoque Statis Dual-Coordenadas Paralelas
Ing. José Ascencio-Moreno
1
josdasce@espol.edu.ec
https://orcid.org/0000-0002-6883-7195
Blga. Miriam Vanessa Hinojosa-Ramos
2
mvhinojo@espol.edu.ec
https://orcid.org/0000-0002-4100-5284
PhD. Francisco Vera Alcívar
3
fvera@espol.edu.ec
https://orcid.org/0000-0001-6541-7243
PhD. Omar Ruiz-Barzola
4
oruiz@espol.edu.ec
https://orcid.org/0000-0001-8206-1744
PhD. María Purificación Galindo-Villardón
5
pgalindo@usal.es
https://orcid.org/0000-0001-6977-7545
MPC. Miriam Ramos-Barberán
6
mvramosb@espol.edu.ec
https://orcid.org/0000-0002-8915-6938
Recibido: 1/9/2020, Aceptado: 1/11/2020
RESUMEN
El control estadístico multivariante de procesos para la producción por lotes
generalmente toma en consideración características correlacionadas para la
inspección del desempeño del proceso. En la literatura, los investigadores han
utilizado varias técnicas estadísticas de forma individual para abordar esta
inspección durante las fases de control y seguimiento. Nuevas estrategias han
explorado la posibilidad de combinar dos técnicas con el fin de optimizar el control
y el monitoreo del proceso por lotes, como el enfoque DS-PC. Este enfoque
novedoso se refiere al uso de Statis Dual y Coordenadas Paralelas e implica una
serie de varios pasos de protocolos y aplicaciones de fórmulas que son propensas
a errores y consumen mucho tiempo. Utilizando la metodología que se encuentra
en la literatura, el paquete DSPC para R
se desarrolló con el objetivo de ofrecer una herramienta simple para realizar el
cómputo de Statis Dual rápidamente para las fases de control y seguimiento. Las
1
Escuela Superior Politécnica del Litoral, Ecuador
2
Escuela Superior Politécnica del Litoral, Ecuador
3
Escuela Superior Politécnica del Litoral, Ecuador
4
Escuela Superior Politécnica del Litoral, Ecuador
5
Universidad de Salamanca, España
6
Escuela Superior Politécnica del Litoral, Ecuador
&
Revista Ciencia & Tecnología
No. 29, 31 de enero de 2021
ISSN impreso: 1390 - 6321
ISSN online: 2661 - 6734
Ascencio, Hinojosa, Vera, Ruiz. An R package for batch process control
and monitory using dual statis-parallel coordinates approach.
salidas del paquete ofrecen visualizaciones gráficas para detectar
comportamientos inusuales durante la producción a través de gráficos de control
IS (Interestructura) y CO (Intraestructura). La salida también incluye el gráfico de
coordenadas paralelas. Este paquete será útil para los profesionales interesados
en la aplicación del enfoque DS-PC a cualquier industria de proceso por lotes a
través de la automatización sugerida por defecto o la opción personalizada. Para
familiarizar a los usuarios con esta estrategia, el paquete proporciona un conjunto
de datos simulado de fabricación de bolsas de plástico industriales.
Palabras clave: producción por lotes, control, monitoreo, DS-PC, paquete
ABSTRACT
Multivariate statistical process control for batch production usually takes into
consideration correlated characteristics for inspection of process performance. In
literature, researchers have used several statistical techniques individually to
address this inspection during the pilot and the monitoring phases. New strategies
have explored the possibility of combining two techniques in order to optimize
batch process control and monitoring, such as, DS-PC approach. This novel
approach stands for Dual STATIS and Parallel Coordinates and involves a multi-
step series of protocols and formula applications that are error-prone and time
consuming. Using the methodology found in the literature, DSPC package for R
was developed to deliver a simple tool to quickly compute Dual STATIS for pilot
and monitoring phases. Outputs of the package offer graphic displays to detect
unusual behavior during the production through IS (Interstructure) and CO
(Intrastructure) control charts. Output also includes Parallel Coordinates plot. This
package will be useful to practitioners interested in DS-PC approach application to
any batch process industry through suggested automatization by default or the
personalized option. To familiarize users with this strategy, the package provides a
simulated dataset of industrial plastic bags fabrication.
Keywords: batch production, control, monitoring, DS-PC, package
Introduction
Nowadays, several industries rely on batch processing to yield final products. High-
quality products are commonly described by quality characteristics (variables),
each of which must be controlled within specifications to keep customer satisfaction
and to describe the process performance as the batch progresses (Lewis, 2014).
In this sense, statistical techniques are mandatory in control and monitoring of
industrial processes, involving surveillance of correlated quality-process
characteristics through control charts and other graphical methods (Bersimis et
al., 2007).
First contributions to batch control and monitoring were mostly grounded on
Multiway Partial Least Squares (MPLS) and Multiway Principal Component Analysis
(MPCA) (Kourti et al., 1995; Nomikos & MacGregor, 1994, 1995). From that
moment on, several strategies and methods have been developed in order to meet
statistical assumptions, typical in batch production models (Lewis, 2014).
2
&
Revista Ciencia & Tecnología
No. 29, 31 de enero de 2021
ISSN impreso: 1390 - 6321
ISSN online: 2661 - 6734
Revista científica Ciencia y Tecnología Vol 21 No 29 págs. 1-13
http://cienciaytecnologia.uteg.edu.ec
Alternative ways included Structuration des tableaux à trois indices de la
Statistique (STATIS), Parallel Factors Analysis (PARAFAC), Tucker3, Multiset
Canonical Correlation Analysis (MCCA), Multiway Independent Component Analysis
(MICA), Multiway Slow Features Analysis (MSFA), and Parallel Coordinates (Dunia
et al., 2012; Escoufier, 1987; Filho & Luna, 2015; Harshman, 1970; Hyvärinen &
Oja, 2000; Inselberg & Dimsdale, 1990; Jiang et al., 2018; Louwerse & Smilde,
2000; Meng et al., 2003; Parra, 2018; Tucker, 1966; Wang et al., 2017; Wiskott
& Sejnowski, 2002; Zhang et al., 2017).
Some recent strategies even contemplate combining more than one technique to
optimize multivariate batch process control under certain conditions, for instance,
DS-PC approach (Dual STATIS-Parallel Coordinates). This nonparametric quality
control strategy based on control charts enables off-line monitoring of batch
processes using Dual STATIS and bagplots for control regions. A complementary
analysis is developed with parallel coordinate plotting to examine tendencies within
out-of-control batches. In this sense, this combined strategy brings on a variable-
wise analysis, leading to support the visual interpretation of out-of-control signals
(Ramos-Barberán et al., 2018).
Although the DS-PC strategy demand data preprocessing along with several
calculations that are not particularly complex, its multi-step approach in which data
set has been collected and cross-referenced in a series of steps that are fairly easy
to mishandle, susceptible to mistakes and tough to replicate.
To facilitate DS-PC strategy application to any practical case, a package for the R
environment (DSPC) was developed to automate the process and
programmatically provide multivariate control charts and descriptive graphics for
batch control and monitoring, without the uncertainty for miscalculation, and with
the convenience and speed that computation provides. Then, industries will be able
to determine if quality specifications are met, resulting in cost and time savings.
Methodology
The package DSPC was written for R, an open source software and programmatic
environment for statistics and graphics. The program runs on the most popular
computer platforms including Windows, MacOS, and UNIX. Since its inception, R
has been used by programmers, scientists, practitioners, and code developers to
create packages that guarantee reproducible code and results (Wickham, 2015).
These packages run customized statistical functions, generate map and graphics,
and allow researchers to import and export from large data sets in the public
domain, among other uses. To date, many thousands of these packages have been
developed in virtually all scientific fields and disciplines (Smith, 2017).
This package was elaborated as a generalization from the DS-PC strategy published
by Ramos-Barberán et al. (2018). Development of the DSPC package followed
coding and compilation guidelines outlined by Kim et al. (2018) and Leisch (2009).
Functions and metadata files for DSPC were created and deposited on Git Hub,
after a substantial testing period that started from 2018. Students at ESPOL
3
&
Revista Ciencia & Tecnología
No. 29, 31 de enero de 2021
ISSN impreso: 1390 - 6321
ISSN online: 2661 - 6734
Ascencio, Hinojosa, Vera, Ruiz. An R package for batch process control
and monitory using dual statis-parallel coordinates approach.
University were required the use of the package as part of an undergraduate class,
and their experiences were used to troubleshoot and debug code.
Results
In this section, the main functions and outputs of the R package DSPC are
presented. The functions of this package allow to perform the DS-PC strategy both
in a step-by-step fashion and automatically. Table 1 shows a brief description for
every function.
Table 1: Functions available in DSPC package
Function Description
TabFactor
Create a Factor from a vector
SeqFactor
Create sequences over a Factor
TableObject
Create a Tables Object ready for Dual STATIS analysis
PreprocessTobj
Suggested preprocessing of the Table Object
DualSTATIS
Dual STATIS analysis for reference data
DualSTATISproje
ction
Dual STATIS projection of new tables
GenBagplots
Bagplots computing for projected tables. The
compute.bagplot function contained in the aplpack
package is used.
Parcoord2
Parallel Coordinates Plot. A modification of parcoord
function from MASS package
AutoProcessing
Automatic processing of data using Dual STATIS
AutoPlotting
Automatic plotting of Dual STATIS results and parallel
coordinates
Source: Self Made
Once the package is downloaded from the GitHub repository and ready to use in
the R environment, it is possible to call these functions to perform analysis of
batch processes with the DS-PC approach (Ramos-Barberán, 2020).
Data organization
Original data may be organized in separated multivariate tables with the same
variables. Reference and additional batches data must be stacked separately, as
shown in Figure 1.
4
&
Revista Ciencia & Tecnología
No. 29, 31 de enero de 2021
ISSN impreso: 1390 - 6321
ISSN online: 2661 - 6734
Revista científica Ciencia y Tecnología Vol 21 No 29 págs. 1-13
http://cienciaytecnologia.uteg.edu.ec
Figure 1: Data organization. Data from batches are organized in multiple tables for
reference and additional testing, then, stacked into two matrices to load them properly to
R.
Source: Self Made
As commented before, two main procedures can be considered: the suggested
automatization and the personalized option. Despite the option preferred, loading
the data tables into the R environment is required.
Suggested use
When a researcher is not familiar with the use of R, it may be overwhelming the
amount of computational knowledge needed for the application of any robust
method to the data available. If that is the case, this package considers a
suggested option which is nearly automatic. To do so, follow these four steps:
1. Prepare. The reference data table must be contained in a csv file with a Factor-
ObservationNames-variables structure, as appears in Figure 2.
5
&
Revista Ciencia & Tecnología
No. 29, 31 de enero de 2021
ISSN impreso: 1390 - 6321
ISSN online: 2661 - 6734
Ascencio, Hinojosa, Vera, Ruiz. An R package for batch process control
and monitory using dual statis-parallel coordinates approach.
Figure 2: Data structure for DSPC package. The structure is organized by a factor to split
the tables stacked, unique names for every observation, and data from every variable.
Source: Self Made
An additional data table, if required for monitoring scheme, must have the same
Factor-ObsNames-variables structure.
2. Load. The reference table must be loaded into the R environment, then, the factor
and names of observations should be extracted from this table. This loading step
also must be done for the Additional table, if needed.
Supposing that Reftable.csv and AddTable.csv are prepared files with the structure
shown in step 1 and placed in the current working directory, they can be loaded as
tables and factors using the following script.
Reference = read.table(file = "Reftable.csv", header = TRUE, sep = ",")
Additional = read.table(file = "Addtable.csv", header = TRUE, sep = ",")
RefFactor = factor(Reference[,1])
RefTable = as.data.frame(Reference[,c(-1,-2)])
rownames(RefTable) = Reference[,2]
AddFactor = factor(Additional[,1])
AddTable = as.data.frame(Additional[,c(-1,-2)])
rownames(AddTable) = Additional[,2]
The separator character used in the function read.table may change. If the loaded
table has not the correct format, it can be necessary to used “;” instead of “,”.
3. Compute. Performing of Dual STATIS analysis is achieved using the
AutoProcessing function in the pilot phase (just reference) or the monitoring phase
(additional batches are considered).
#Pilot phase
res_Ref = AutoProcessing( RefTable, RefFactor )
#Monitoring phase
res_Ref = AutoProcessing( RefTable, RefFactor, AddTable, AddFactor)
6
&
Revista Ciencia & Tecnología
No. 29, 31 de enero de 2021
ISSN impreso: 1390 - 6321
ISSN online: 2661 - 6734
Revista científica Ciencia y Tecnología Vol 21 No 29 págs. 1-13
http://cienciaytecnologia.uteg.edu.ec
4. Plot. The Interstructure, Intrastructure and Parallel Coordinates plots must be
drawn using the AutoPlotting function and the Dual STATIS results derived from the
step 3.
#Analysis mode
AutoPlotting( REF = res_Ref$REF, BPS = res_Ref$BPS )
#Monitoring mode
AutoPlotting( REF = res_RefAdd$REF,
ADD = res_RefAdd$ADD,
BPS = res_Ref$BPS )
Personalized use
When the data is organized as a Reftable and Addtable, both can be loaded to the R
environment, and then use the available functions of the package to compute the
elements according to the following:
1. If RefFactor is not already loaded, it should be created from Reftable using the
TabFactor function.
2. Optionally, if not available, names can be easily assigned to every observation in
Reftable using the SeqFactor function on RefFactor.
3. Creating of a table object (Tobj) using the TableObject function with the items
Reftable and RefFactor.
4. The preprocessing of matrices contained in Tobj$Xk_data is suggested via scaling,
centering and normalizing. The PreprocessTobj function allows to perform
preprocessing on Tobj easily.
5. Performing of Dual STATIS on Tobj via DualSTATIS function to generate a Dual
STATIS results (Dsr). At this point, the Dsr list contains enough information to
perform Interstructure and Intrastructure analysis. Additionaly, the parcoord2
function allows to visualize all variables using the Tobj$Original_data matrix.
6. Steps 1 to 4 are repeated to obtain a table object (AddTobj) from Addtable. Then,
use the DualSTATISprojection function on this AddTobj, taking Tobj into account, to
obtain a Dual STATIS results list (AddDsr).
7. GenBagplots function is used to create the control regions involved in the
monitoring of additional batches. This completes the required elements for plotting
of batches projections, complementing with parcoord2 function.
A summarization of this scheme is presented in Figure 3.
7
&
Revista Ciencia & Tecnología
No. 29, 31 de enero de 2021
ISSN impreso: 1390 - 6321
ISSN online: 2661 - 6734
Ascencio, Hinojosa, Vera, Ruiz. An R package for batch process control
and monitory using dual statis-parallel coordinates approach.
Figure 3: Personalized use of DSPC package. The flow chart shows the computation
process for applying the DS-PC approach using the functions contained in the DSPC package.
Source: Self Made
Available data
A simulated dataset of industrial plastic bags fabrication is available in this package.
Every batch is represented by a table constituted by 50 observations of 3 process
variables. A factor is associated to each data table. This dataset is coded as
PlasticBags, a list containing 200 reference batches stacked in PlasticBags$Ref$data
and 8 additional testing batches stacked in PlasticBags$Add$data. The testing batches
are conformed by a normal batch and seven anomalous batches, affected by shifts in
mean, standard deviation, and correlation shifts (Ramos-Barberán et al., 2018).
Outputs
Considering the plastic bag data, it is possible to easily generate all the plots
associated, using the following script:
data( PlasticBags )
REFtab = PlasticBags$Ref$data[1:1500,]
ADDtab = PlasticBags$Add$data
REFfac = PlasticBags$Ref$factor[1:1500]
8
&
Revista Ciencia & Tecnología
No. 29, 31 de enero de 2021
ISSN impreso: 1390 - 6321
ISSN online: 2661 - 6734
Revista científica Ciencia y Tecnología Vol 21 No 29 págs. 1-13
http://cienciaytecnologia.uteg.edu.ec
ADDfac = PlasticBags$Add$factor
DSPCres = AutoProcessing(REFtab, REFfac, ADDtab, ADDfac)
AutoPlotting( DSPCres$REF, DSPCres$ADD, DSPCres$BPS )
Once the code has run, a set of plots is presented as result. These plots are collected
in Figures 4 and 5. On the other hand, if the personalized option is chosen, the
characteristics of the graphs can be modified, as it can be seen in Ramos-Barberán et
al. (2018), section 3.1 Illustrative example.
Figure 4. Control Charts created using the DSPC package. Graphs show the
Interstructure (Left top) and Intrastructure Control Charts created using data and functions
contained in the DSPC package.
9
&
Revista Ciencia & Tecnología
No. 29, 31 de enero de 2021
ISSN impreso: 1390 - 6321
ISSN online: 2661 - 6734
Ascencio, Hinojosa, Vera, Ruiz. An R package for batch process control
and monitory using dual statis-parallel coordinates approach.
Figure 5. Parallel Coordinates plots created using the DSPC package. Graphs show
Parallel Coordinates of reference data (black) and testing batches (blue), each of them,
created using data and functions contained in the DSPC package.
10
&
Revista Ciencia & Tecnología
No. 29, 31 de enero de 2021
ISSN impreso: 1390 - 6321
ISSN online: 2661 - 6734
Revista científica Ciencia y Tecnología Vol 21 No 29 págs. 1-13
http://cienciaytecnologia.uteg.edu.ec
Discussion
With the release of DSPC package, the authors hope that researchers will not only
benefit from its practicality, but also, that they will explore a tool that conceptualizes
Dual STATIS and Parallel Coordinates strategies under the scope of multivariate
statistical process control and monitoring. Since these strategies have individual
packages already uploaded to R repository in other fields applications (ade4,
MExPosition, MASS), the implementation of this package would address a better
comprehension of its combined potential for batch production application (Chessel et
al., 2004; Chin Fatt et al., 2013; Dray et al., 2007; Venables & Ripley, 2002). It can
also aid in the adoption of uniform historical records that can be used for monitoring
across batches, variables, and time.
One of the conveniences of open-source software is that the original code is freely and
easily available, and may be modified as needed. Future work on this package could
incorporate control charts to handle batches with missing values, which are common
in practice, as well as, other data preprocessing options. While these can be easily
incorporated into this package, we believe it is best to show practical applications in
multivariate statistical process control before it should be coded. In this sense, it is
our hope that future versions of this package can be upgraded with feedback from
researchers around the world.
Conclusions
To sum up, DSPC package is an easy time-saving graphical framework for scientists
and practitioners to control and monitor any batch process data through DS-PC
approach. It implements Dual STATIS computation for pilot and monitoring phases
and offers graphic displays to detect unusual behavior during the production through
IS (Interstructure) and CO (Intrastructure) control charts besides Parallel Coordinates
outputs.
References
Bersimis, S., Psarakis, S., & Panaretos, J. (2007). Multivariate Statistical Process
Control Charts: An Overview. Quality and Reliability Engineering International,
23(5), 517543. https://doi.org/10.1002/qre.829
Chessel, D., Dufour, A., & Thioulouse, J. (2004). The ade4 Package I: One-Table
Methods. R News, 4(1), 510.
Chin Fatt, C., Beaton, D., & Abdi, H. (2013). Package MExPosition.
http://www2.uaem.mx/r-mirror/web/packages/MExPosition/MExPosition.pdf
Dray, S., Dufour, A., & Chessel, D. (2007). The ade4 Package II: Two-Table and K-
Table Methods. R News, 7(2), 4752.
Dunia, R., Edgar, T., & Nixon, M. (2012). Process Monitoring Using Principal
Components in Parallel Coordinates. American Institute of Chemical Engineers
Journal, 59(2), 112. https://doi.org/10.1002/aic.13846
Escoufier, Y. (1987). Three-Mode Data Analysis: The STATIS Method. In B. Fichet &
C. Lauro (Eds.), Methods for Multidimensional Data Analysis (pp. 259272). ECAS.
Filho, D. M., & Luna, L. P. (2015). Multivariate quality control of batch processes using
STATIS. International Journal of Advanced Manufacturing Technology, 82(58),
867875. https://doi.org/10.1007/s00170-015-7428-0
Harshman, R. A. (1970). Foundations of the PARAFAC procedure: Models and
conditions for an “explanatory” multimodal factor analysis. UCLA Working Papers
in Phonetics, 16(10), 184.
11
&
Revista Ciencia & Tecnología
No. 29, 31 de enero de 2021
ISSN impreso: 1390 - 6321
ISSN online: 2661 - 6734
Ascencio, Hinojosa, Vera, Ruiz. An R package for batch process control
and monitory using dual statis-parallel coordinates approach.
Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and
applications. Neural Networks, 13(45), 411430.
https://doi.org/10.1016/S0893-6080(00)00026-5
Inselberg, A., & Dimsdale, B. (1990). Parallel Coordinates: A Tool for Visualizing Multi-
Dimensional Geometry. Proceedings of the First IEEE Conference on Visualization,
361378. http://dl.acm.org/citation.cfm?id=949531.949588
Jiang, Q., Gao, F., Yi, H., & Yan, X. (2018). Multivariate Statistical Monitoring of Key
Operation Units of Batch Processes Based on Time-Slice CCA. IEEE Transactions
on Control Systems Technology, 27(3), 13681375.
https://doi.org/10.1109/TCST.2018.2803071
Kim, I. S., Martin, P., McMurry, N., & Halterman, A. (2018). Instructions for Creating
Your Own R Package. http://web.mit.edu/insong/www/teaching/teaching.html
Kourti, T., Nomikos, P., & MacGregor, J. F. (1995). Analysis, monitoring and fault
diagnosis of batch processes using multiblock and multiway PLS. Journal of
Process Control, 5(4), 277284. https://doi.org/10.1016/0959-1524(95)00019-
M
Leisch, F. (2009). Creating R package: A Tutorial. In P. Brito (Ed.), Compstat 2008-
Proceedings in Computational Statistics (pp. 119). Physica Verlag.
Lewis, D. (2014). Control Charts for Batch Processes. In Wiley StatsRef: Statistics
Reference Online. John Wiley & Sons.
Louwerse, D. J., & Smilde, A. K. (2000). Multivariate statistical process control of
batch processes based on three-way models. Chemical Engineering Science,
55(7), 12251235. https://doi.org/10.1016/S0009-2509(99)00408-X
Meng, X., Morris, A. J., & Martin, E. B. (2003). On-line monitoring of batch processes
using a PARAFAC representation. Journal of Chemometrics, 17(1), 6581.
https://doi.org/10.1002/cem.776
Nomikos, P., & MacGregor, J. F. (1994). Monitoring Batch Processes Using Multiway
Principal Component Analysis. AIChE Journal, 40(8), 13611375.
https://doi.org/10.1002/aic.690400809
Nomikos, P., & MacGregor, J. F. (1995). Multivariate SPC Charts for Monitoring Batch
Processes. Technometrics, 37, 4159.
https://doi.org/10.1080/00401706.1995.10485888
Parra, L. C. (2018). Multi-set Canonical Correlation Analysis simply explained. Nips.
http://arxiv.org/abs/1802.03759
Ramos-Barben, M. (2020). Online repository for DSPC R package files data. GitHub
Repository. https://github.com/mvramosb/DSPC
Ramos-Barberán, M., Hinojosa-Ramos, M. V., Ascencio-Moreno, J., Vera, F., Ruiz-
Barzola, O., & Galindo-Villardón, M. P. (2018). Batch process control and
monitoring: a Dual STATIS and Parallel Coordinates (DS-PC) approach. Production
and Manufacturing Research, 6(1).
https://doi.org/10.1080/21693277.2018.1547228
Smith, D. (2017). CRAN now has 10,000 R packages. Here’s how to find the ones you
need. Revolutions. https://blog.revolutionanalytics.com/2017/01/cran-
10000.html
Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis.
Psychometrika, 31(3), 279311. https://doi.org/10.1007/BF02289464
Venables, W. N., & Ripley, B. D. (2002). Modern Applied Statistics with S (Fourth).
Springer. http://www.stats.ox.ac.uk/pub/MASS4/
12
&
Revista Ciencia & Tecnología
No. 29, 31 de enero de 2021
ISSN impreso: 1390 - 6321
ISSN online: 2661 - 6734
Revista científica Ciencia y Tecnología Vol 21 No 29 págs. 1-13
http://cienciaytecnologia.uteg.edu.ec
Wang, Y., Jiang, Q., Li, B., & Cui, L. (2017). Joint-Individual Monitoring of Parallel-
Running Batch Processes Based on MCCA. IEEE Access, 6, 1300513014.
https://doi.org/10.1109/ACCESS.2017.2784097
Wickham, H. (2015). R Packages. O`Reilly Media. http://r-pkgs.had.co.nz/
Wiskott, L., & Sejnowski, T. J. (2002). Slow feature analysis: Unsupervised learning
of invariances. Neural Computation, 14(4), 715770.
https://doi.org/10.1162/089976602317318938
Zhang, H., Tian, X., & Deng, X. (2017). Batch Process Monitoring Based on Multiway
Global Preserving Kernel Slow Feature Analysis. IEEE Access, 5, 26962710.
https://doi.org/10.1109/ACCESS.2017.2672780
13
&
Revista Ciencia & Tecnología
No. 29, 31 de enero de 2021
ISSN impreso: 1390 - 6321
ISSN online: 2661 - 6734