Revista Científica Ciencia y Tecnología Vol 24 No 41
http://cienciaytecnologia.uteg.edu.ec
Referencias bibliográficas
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan , Y., Al-Shamma, O., . . . Farhan,
L. (2021). Review of deep learning: Concepts, CNN architectures, challenges,
applications, future directions. J. Big Data, 8(53). doi:https://doi.org/10.1186/s40537-
021-00444-8
Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT). (2004). Enfermedades del
maíz: una guía para su identificación en el campo. Ciudad de México: CIMMYT.
Espejo-Garcia, B., Mylonas, N., Athanasakos, L., Spyros Fountas, S., & Vasilakoglou, I.
(2020). Towards weeds identification assistance through transfer learning. Comput.
Electron, 171, 105306. doi:https://doi.org/10.1016/j.compag.2020.105306
FAO, FIDA, OPS, PMA, UNICEF. (2023). Panorama regional de la seguridad alimentaria y
nutricional - América Latina y el Caribe 2022: hacia una mejor asequibilidad de las dietas
saludables. Santiago de Chile: Organización de las Naciones Unidas para la
Alimentación y la Agricultura (FAO).
Fraiwan, M., Faouri, E., & Khasawneh, N. (2022). Classification of Corn Diseases from Leaf
Images Using Deep Transfer Learning. Plants, 11(20), 2668.
doi:https://doi.org/10.3390/plants11202668
Freire de Oliveira, M., Valezka Ortiz, B., Trímer Morata, G., Jiménez, A. F., de Souza Rolim,
G., & Pereira da Silva, R. (2022). Training Machine Learning Algorithms Using Remote
Sensing and Topographic Indices for Corn Yield Prediction. Remote Sensing, 14(23), 1-
24. doi:https://doi.org/10.3390/rs14236171
Ghosh, A., Sultana , F., & Chakrabarti, A. (2020). Fundamental Concepts of Convolutional
Neural Network. En V. Balas, R. Kumar, & R. Srivastava, Recent Trends and Advances in
Artificial Intelligence and Internet of Things. Intelligent Systems Reference Library (Vol.
172, págs. 519-567). Springer, Cham. doi:https://doi.org/10.1007/978-3-030-32644-9_36
Gobierno de México. (2019). Plan Nacional de Desarrollo 2019-2024. Gobierno de México.
Gobierno de México. (15 de 08 de 2023). Gobierno de México. Obtenido de Data México:
https://www.economia.gob.mx/datamexico/es/profile/product/corn?internationalSale
sStartYearSelector2=2021
Gothai, E., Natesan, P., Aishwariya, S., Aarthy, T. B., & Brijpal Singh, G. (2020). 2020 Fourth
International Conference on Computing Methodologies and Communication (ICCMC).
Weed Identification using Convolutional Neural Network and Convolutional Neural
Network Architectures (pp. 958-965). Erode, India.
doi:10.1109/ICCMC48092.2020.ICCMC-000178.
Kim, N., Na, S.-I., Park, C.-W., Huh, M., Oh, J., Ha, K.-J., . . . Lee, Y.-W. (2020). . An Artificial
Intelligence Approach to Prediction of Corn Yields under Extreme Weather Conditions
Using Satellite and Meteorological Data. Applied Sciences, 10((11)), 37585.
doi:https://doi.org/10.3390/app10113785
Kusumo, B. S., Heryana, A., Mahendra, O., & Pardede, H. F. (2018). Machine Learning-based
for Automatic Detection of Corn-Plant Diseases Using Image Processing. 2018
International Conference on Computer, Control, Informatics and its Applications (IC3INA),
93-97. doi:10.1109/IC3INA.2018.8629507.
Liu, J., & Wang, X. (2021). Plant diseases and pests detection based on deep learning: A
review. Plant Methods, 17(22). doi: https://doi.org/10.1186/s13007-021-00722-9